首页> 外文OA文献 >Super-resolution and super-localization microscopy: a novel tool for imaging chemical and biological processes
【2h】

Super-resolution and super-localization microscopy: a novel tool for imaging chemical and biological processes

机译:超分辨率和超定位显微镜:一种用于化学和生物过程成像的新颖工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.The obtained spatial resolution for plant cell imaging is not yet as good as that achieved in mammalian cell imaging. Numerous technical challenges, including the generally high fluorescence background due to significant autofluorescence of endogenous components, and the presence of the cell wall (\u3e 250 nm thickness) limit the potential of super-resolution imaging in studying the cellular processes in plants. Here variable-angle epi-fluorescence microscopy (VAEM) was combined with localization based super-resolution imaging, direct stochastic optical reconstruction microscopy (dSTORM), to demonstrate imaging of cortical microtubule (CMT) network in the Arabidopsis thaliana root cells with 20 – 40 nm spatial resolution for the first time. With such high spatial resolution, the subcellular organizations of CMTs within single cells, and different cells in many regions along the root, were analyzed quantitatively.Nearly all of these technical advances in super-localization and super-resolution microscopy imaging were originally developed for biological studies. More recently, however, efforts in super-resolution chemical imaging started to gain momentum. New discoveries that were previously unattainable with conventional diffraction-limited techniques have been made, such as a) super-resolution mapping of catalytic reactions on single nanocatalysts and b) mechanistic insight into protein ion-exchange adsorptive separations. Furthermore, single molecules and single particles were localized with nanometer precision for resolving the dynamic behavior of single molecules in porous materials. This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).To fully understand the working mechanisms of biological processes such as stepping of motor proteins requires resolving both the translational movement and the rotational motions of biological molecules or molecular complexes. Nanoparticle optical probes have been widely used to study biological processes such as membrane diffusion, endocytosis, and so on. The greatly enhanced absorption and scattering cross sections at the surface plasmon resonance (SPR) wavelength make nanoparticles an ideal probe for high precision tracking. Furthermore, gold nanorods (AuNRs) were used for resolving orientation changes in all three dimensions. The translational and rotational motions of AuNRs in glycerol solutions were tracked with fast imaging rate up to 500 frames per second (fps) in reflected light sheet microscopy (RLSM). The effect of imaging rates on resolving details of single AuNR motions was studied.
机译:单分子和单颗粒的光学显微镜成像是研究分子和纳米尺度的基本生物学和化学过程的基本方法。传统光学显微镜可获得的最佳空间分辨率(〜λ/ 2)由光的衍射决定。然而,在过去的十年中出现了基于单分子的超定位和超分辨率显微成像技术。可以以纳米级的精度和精度定位单个分子以研究生物和化学过程。获得的用于植物细胞成像的空间分辨率还不如在​​哺乳动物细胞成像中获得的空间分辨率。许多技术挑战,包括由于内源性成分的显着自发荧光而产生的通常较高的荧光背景,以及细胞壁(厚度为250 nm)的存在限制了超分辨率成像在研究植物细胞过程中的潜力。在这里,可变角度落射荧光显微镜(VAEM)与基于定位的超分辨率成像,直接随机光学重建显微镜(dSTORM)相结合,以证明拟南芥(Arabidopsis thaliana)根细胞中具有20 – 40的皮层微管(CMT)网络成像。纳米空间分辨率。在如此高的空间分辨率下,定量分析了单个细胞内以及沿根许多区域中不同细胞内CMT的亚细胞组织。近来,所有这些在超定位和超分辨率显微镜成像方面的技术进展都是为生物学而开发的。学习。然而,最近,在超分辨率化学成像方面的努力开始获得动力。已经取得了以前用常规衍射极限技术无法获得的新发现,例如a)单一纳米催化剂上催化反应的超分辨率映射,以及b)对蛋白质离子交换吸附分离的机械观察。此外,以纳米精度定位单分子和单颗粒,以解决多孔材料中单分子的动力学行为。这项工作揭示了孔隙结构的异质性。本文阐明了多层介孔纳米催化剂在单分子和单颗粒水平上的分子输运和催化反应的耦合。以前的大多数研究都分别处理了这两个重要现象。测试了非荧光复红到高荧光试卤灵的荧光氧化反应。使用全内反射荧光显微镜(TIRFM)研究了试卤灵分子在对齐的纳米孔中的扩散行为。要充分了解生物过程(例如运动蛋白的步进)的工作机制,需要解决生物分子的平移运动和旋转运动或分子复合物。纳米粒子光学探针已被广泛用于研究生物过程,例如膜扩散,内吞作用等。表面等离子体激元共振(SPR)波长的吸收和散射截面大大增强,使纳米颗粒成为高精度跟踪的理想探针。此外,金纳米棒(AuNRs)用于解决所有三个维度的方向变化。在反射光片显微镜(RLSM)中以高达500帧每秒(fps)的快速成像速率跟踪了AuNRs在甘油溶液中的平移和旋转运动。研究了成像速率对解决单个AuNR运动细节的影响。

著录项

  • 作者

    Dong, Bin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号